Deep feature for text-dependent speaker verification

نویسندگان

  • Yuan Liu
  • Yanmin Qian
  • Nanxin Chen
  • Tianfan Fu
  • Ya Zhang
  • Kai Yu
چکیده

Recently deep learning has been successfully used in speech recognition, however it has not been carefully explored and widely accepted for speaker verification. To incorporate deep learning into speaker verification, this paper proposes novel approaches of extracting and using features from deep learning models for text-dependent speaker verification. In contrast to the traditional short-term spectral feature, such as MFCC or PLP, in this paper, outputs from hidden layer of various deep models are employed as deep features for text-dependent speaker verification. Fours types of deep models are investigated: deep Restricted Boltzmann Machines, speech-discriminant Deep Neural Network (DNN), speaker-discriminant DNN, and multi-task joint-learned DNN. Once deep features are extracted, they may be used within either the GMM-UBM framework or the identity vector (i-vector) framework. Joint linear discriminant analysis and probabilistic linear discriminant analysis are proposed as effective back-end classifiers for identity vector based deep features. These approaches were evaluated on the RSR2015 data corpus. Experiments showed that deep feature based methods can obtain significant performance improvements compared to the traditional baselines, no matter if they are directly applied in the GMM-UBM system or utilized as identity vectors. The EER of the best system using the proposed identity vector is 0.10%, only one fifteenth of that in the GMM-UBM baseline. 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tandem deep features for text-dependent speaker verification

Although deep learning has been successfully used in acoustic modeling of speech recognition, it has not been thoroughly investigated and widely accepted for speaker verification. This paper describes an investigation of using various types of deep features in a Tandem fashion for text-dependent speaker verification. Three types of networks are used to extract deep features: restricted Boltzman...

متن کامل

Deep Neural Network based Text-Dependent Speaker Recognition: Preliminary Results

Recently there has significant research interest in using neural networks as feature extractors for text-dependent speaker verification. These types of systems have been shown to perform very well when a large amount of speaker data is available for training. In this work we are interested in testing the efficacy of these methods when only a small amount of training data is available. Google re...

متن کامل

Multi-task learning for text-dependent speaker verification

Text-dependent speaker verification uses short utterances and verifies both speaker identity and text contents. Due to this nature, traditional state-of-the-art speaker verification approaches, such as i-vector, may not work well. Recently, there has been interest of applying deep learning to speaker verification, however in previous works, standalone deep learning systems have not achieved sta...

متن کامل

Deep Speaker Vectors for Semi Text-independent Speaker Verification

Recent research shows that deep neural networks (DNNs) can be used to extract deep speaker vectors (d-vectors) that preserve speaker characteristics and can be used in speaker verification. This new method has been tested on text-dependent speaker verification tasks, and improvement was reported when combined with the conventional i-vector method. This paper extends the d-vector approach to sem...

متن کامل

Time-Contrastive Learning Based Unsupervised DNN Feature Extraction for Speaker Verification

In this paper, we present a time-contrastive learning (TCL) based unsupervised bottleneck (BN) feature extraction method for speech signals with an application to speaker verification. The method exploits the temporal structure of a speech signal and more specifically, it trains deep neural networks (DNNs) to discriminate temporal events obtained by uniformly segmenting the signal without using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Speech Communication

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2015